Ex. 1 For $f(x) = \frac{1}{4}x^4 - 6x^2 + x - 3$, determine:

- a. The intervals of concavity.
- b. The values of x at which f(x) has a point of inflection.

$$f''(x) = 3x^2 - 12 = 0$$

 $x = \pm 2$

Ex. 2 Given the graph of f'(x), find the values of x at which the graph of f(x) has a point of inflection.

Ex. 3 Given the graph of f''(x), find the values of x at which the graph of f(x) has a point of inflection.

f has a P.o.I. @ x=-3, 1,3.

Ex. 4 Does the tangent line to the graph of $f(x) = xe^{-x}$ at x = 1 lie above of below the graph of f(x)? Justify your answer.

$$f'(x) = -xe^{-x} + e^{-x}$$

= $e^{-x}(1-x)$
 $f''(x) = -e^{-x} - e^{-x}(1-x)$
 $f''(x) = -\frac{1}{e} < 0$

The Second Derivative Test for Extrema

- a) Indicate the relative extrema on the graph of f(x).
- b) What do you know about the value of f'(x) at each extrema? f (x) = 0
- c) What do you know about the value of f''(x) at each extrema?

Ex. 5 Use the second derivative test to find the relative extrema of $f(x) = x^4 - 2x^2$.

$$f''(0) = -4 < 0 \rightarrow f$$
 is concave down
 $f''(1) = 8 > 0 \rightarrow f$ is concave up

Ex. 6 Use the second derivative test to find the relative extrema of $f(x) = \sqrt{2}x - 2\cos x$ on the interval $[0, 2\pi]$.

$$f'(x) = \sqrt{2} + 2\sin x = 0$$
 $f''(x) = 2\cos x$

$$Sin k = -\sqrt{2}$$